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Abstract 

Chronic low-grade inflammation has been identified as a major contributor in the development of atherosclero-
sis. Nuclear Factor-κappa B (NF-κB) is a critical transcription factors family of the inflammatory pathway. As a major 
catalytic subunit of the IKK complex, IκB kinase β (IKKβ) drives canonical activation of NF-κB and is implicated in the 
link between inflammation and atherosclerosis, making it a promising therapeutic target. Various natural product 
derivatives, extracts, and synthetic, show anti-atherogenic potential by inhibiting IKKβ-mediated inflammation. This 
review focuses on the latest knowledge and current research landscape surrounding anti-atherosclerotic drugs that 
inhibit IKKβ. There will be more opportunities to fully understand the complex functions of IKKβ in atherogenesis and  
develop new effective therapies in the future.
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Introduction
Arteries are the conduits that transport blood from 
the heart to tissues and organs [1]. The artery wall, such 
as aortic wall, is made up of three layers from inside to 
outside: the intima, media, and adventitia. The intima 
consists mainly of a single layer of endothelial cells (ECs) 
and a thin basal membrane that acts as a barrier to pre-
vent the leakage of blood components into the  vessel 
wall. The media layer regulates the artery elasticity, which 
is primarily composed of smooth muscle cells (SMCs). 
The adventitia refers to the connective tissue covering the 

outer layer [2]. Increased thickness of the vessel wall, ste-
nosis, or occlusion of the lumen may lead to ischemia and 
dysfunction of tissues and organs. Atherosclerosis is  a 
common cause of ischemic diseases (such as stroke and 
myocardial ischemia) with high morbidity and mortal-
ity worldwide [3]. It is characterized by the formation of 
atherosclerotic plaques in the intima of large or medium-
sized systemic arteries.

It is well established that atherosclerosis is not only a 
metabolic disorder, but also a chronic low-grade sterile 
inflammation in the vasculature orchestrated by a net-
work of inflammatory cytokines. ECs, macrophages and 
migratory SMCs from the media layer are the major cel-
lular components of atherosclerotic lesions [4–6]. These 
cells cooperate to initiate the inflammatory signal and to 
upregulate the adhesion molecule expression and ather-
manous plaque is finally formed [7]. Recently, it has dem-
onstrated that nuclear factor-κappa B (NF-κB) is closely 
related to atherosclerosis-associated inflammation [8, 
9]. The researchers found that NF-κB was activated in 
the key components of atherosclerotic plaques, includ-
ing ECs, macrophages, and SMCs [10–12]. IκB kinase 
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β (IKKβ), the predominant catalytic subunit of the IKK 
complex [13], is required for the canonical activation 
of NF-κB, which also known as a critical molecular link 
between inflammation and atherosclerosis  [14]. Fortu-
nately, a variety of natural product-based derivatives, 
natural extracts, synthetic drugs, as well as peptides 
et.al other drugs, all display anti-atherogenic poten-
tial by inhibiting IKKβ-mediated inflammation, which 
may be potential therapy medicine for atherosclerosis. 
As a result, this review provides the current findings on 
IKK and atherosclerosis, as well as outlines therapeu-
tic interventions used to target IKK for the treatment of 
atherosclerosis.

Inflammation and atherosclerosis
Atherosclerosis, a chronic inflammatory disease of the 
vessel wall, is characterized by the accumulation of lipid-
laden macrophages and fibrous material in the large or 
medium-sized systemic arteries [15]. A key initiating 
event is the retention of ApoB-containing lipoprotein 
particles under the endothelial layer of the arterial wall 
[16]. There is overwhelming evidence that a transgenic 
expression of a natural antibody to oxidized phospho-
lipids suppresses lesions in hypercholesterolemic low-
density lipoprotein receptor knock out (LDLR−/−) mice, 
which supports the lipid oxidation hypothesis for ath-
erosclerosis [17]. What’s more, as a result of the distur-
bances in blood flow, the ECs are activated, and the tight 
junctions between them become "leaky", which facilitates 
the trans-endothelial transport of plasma LDL and TG-
rich lipoproteins or diffusion at cell–cell contact points, 
and reaches the intima [18]. As a matter of fact, the sub-
sequent activation of ECs is caused by the oxidation of 
lipoprotein lipids and other mediators of inflammation, 
which leads to the expression of vascular cell adhesion 
molecule 1 (VCAM-1), intercellular cell adhesion mol-
ecule-1 (ICAM-1), and E-selectin, as well as promotes 
the adhesion of monocytes and chemokines, and inflam-
mation occurs [19]. This process involves many cells 
and cytokines, such as ECs, macrophages, lymphocytes 
(T and B cells), dendritic cells (DCs), interleukin family, 
adhesion molecules, and TNF-α [20]. Immediately after-
wards, monocytes are recruited to the vessel wall and 
enter the intimal, which are stimulated by a macrophage-
stimulating factor (M-CSF) and other cytokines to dif-
ferentiate into macrophages [21]. In response to local 
microenvironmental signals, macrophages acquire func-
tionally distinct phenotypes, including the pro-inflamma-
tory M1-like phenotype, and the pro-resolving M2-like 
phenotype [22]. Macrophages contribute very impor-
tantly to lesion progression, in ApoE−/− mice, the num-
ber of macrophages in early atherosclerosis is determined 

by recruitment; in more advanced lesions, however, it 
was largely dependent on proliferation of local mac-
rophages, rather than monocyte [23, 24]. At the same 
time, in response to lipid oxidation, LDL transforms 
into ox-LDL, which is scavenged by monocyte receptors 
upon infiltration, converting monocytes into lipid-filled 
macrophage foam cells [25]. With the lesion progresses, 
SMCs in the media transform from a contractile to a pro-
liferative state, and migrate into the intima [26]. Even-
tually, the intimal SMCs secrete an extracellular matrix 
mainly composed of collagen, forming a fibrous cap to 
protect against plaque rupture. A study of lineage tracing 
shows that the intimal SMCs can differentiate into mac-
rophage-like and osteochondrogenic descendants [27]. 
In the presence of lipid, macrophage-like SMCs can pro-
duce foam cells, accumulated foam cells undergo apop-
tosis and inhibited efferocytosis [28]. It is inevitable that 
some apoptotic foam cells may escape efferocytosis and 
contribute to the formation of necrotic lipid cores, caus-
ing secondary necrosis and inflammation [29] (Fig. 1).

The role of IKKβ/NF‑κB in the development 
of atherosclerosis
The  NF‑κB signaling pathway consists  of NF‑κB, the 
inhibitor of Kinase B (IκB), the IκB kinase (IKK) com-
plex and IKK upstream kinases [30]. There are two 
main pathways involved in NF-κB activation, namely 
the canonical (classic) and the non-canonical pathways 
[31]. The canonical NF-κB pathway is present in most 
cell types. The most abundant forms of NF-κB activated 
by the typical pathway are the heterodimers of p50 and 
p65 [32]. In the resting state, its binding to IκB keeps 
NF-κB in inactive form in the cytoplasm when nuclear 
translocalization signals [33, 34]. When cytokines, such 
as TNF-α, IL-1, and lipopolysaccharide (LPS), attach 
to their receptors, TNFR, IL-1R, and toll- like receptor 
(TLR), respectively, IKK is activated (Fig.  2) [35]. Then, 
IKK induces phosphorylation of IκB on Ser32 and (or) 
Ser36, and subsequent polyubiquitination. As a result, 
NF-κB dissociates from the NF-κB/IκB complex, and 
translocates to nucleus, where it stimulates the transcrip-
tions of cytokines and cell adhesion molecules. IKK con-
sists of two catalytic subunits, IKKα and IKKβ, and an 
NF-κB essential modifier (NEMO), also known as IKKγ 
[36]. There is an NEMO-binding domain (NBD) at the 
C-terminus of IKKα and IKKβ, which mediates the for-
mation of the IKK complex. Although IKKα and IKKβ 
have similar structural features, they work in different 
ways. During activation of the canonical pathway, IKKβ is 
the dominant kinase promoting phosphorylation of IκB 
on Ser32 and Ser36, instead of IKKα [37]. Once the ser-
ine on the activation loop of IKKβ is mutated to alanine, 
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TNF-α, IL-1, and LPS all fail to activate NF-κB [38]. In 
contrast, the same mutation in IKKα failed to reveal 
a similar effect [39]. In summary, the IKKβ/NF-κB path-
way plays a pivotal role in pro-inflammatory responses, 
and therefore IKKβ inhibitors may be an effective target 
in modulating NF-κB activity.

During atherosclerosis, NF-κB activation is dependent 
on IKKβ rather than IKKα [40]. A small peptide mimick-
ing NBD structure was synthesized and introduced into 
cells, which significantly inhibited NF-κB activity. In dia-
betic mice, NBD peptide attenuated NF-κB activation 
and markedly reduced the size of atherosclerotic plaques 

by inhibiting IKK complex formation [41]. Similarly, 
ebselen reduced atherosclerotic lesions in the aorta by 
inhibiting the phosphorylation of IKKβ, thus abandoned 
NF-κB activation in diabetic ApoE−/− mice [42]. Further-
more, myeloid-specific IKKβ deficiency alleviated ath-
erosclerosis in LDLR−/− mice [40]. IKKα deficiency did 
not attenuate atherosclerosis, but only haematopoiesis 
in ApoE−/− mice [43]. However, some studies treported 
different conclusion. For instance, IKKβ deficiency did 
not affect atherosclerotic lesion size, rather it promoted 
plaque vulnerability and lesional inflammation in obese 
LDLR−/− mice [44].

Fig. 1  The key inflammatory mechanisms involved in the development of atherosclerosis. Monocytes are first recruited to developing plaques 
by VCAM-1, ICAM-1, and E-seletin. Then, monocytes differentiate into macrophages, and reactive oxygen species (ROS) from vascular lumen 
accumulates oxidizes LDL (ox-LDL). Ox-LDL is mostly taken up by macrophage scavenger receptors and becomes foam cells. Macrophages and 
foam cells secrete inflammatory cytokines, such as IL-6, IL-12 and TNF-α, which in return exacerbates the inflammatory response. Inflammatory 
cytokines secrete matrix metalloproteinases (MMPs), which degrades the fibrous plaque. This could lead to plaque rupture and thrombosis. In 
addition, inflammatory cytokines promote the proliferation and migration of smooth muscle cells (SMCs), which contributes to the formation of 
fibrous cap. Foam cell apoptosis promotes plague rupture
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Despite some conflicting views, the anti-inflamma-
tory therapy targeting IKKβ is regarded as a effective 
way in ameliorating atherosclerosis. A variety of drugs, 
especially natural products-based derivatives, natu-
ral extracts, and synthetic drugs, have been shown to 
inhibit IKKβ, therefore could be candidate drugs to 
treat atherosclerosis.

The role of IKKβ in key cell types and the influence 
on atherosclerosis
Endothelial cells IKKβ and atherosclerosis
In atherosclerotic plaques, IKKβ/NF-κB signaling 
induced by ox-LDL is activated in ECs as well as in vul-
nerable plaques [45–47]. What’s more, the activation of 
endothelial IKKβ stimulates monocyte infiltration into 

Fig. 2  The Activation and regulation of IKKβ/NF-κB pathway. ①The binding of LPS to TLR4 recruits TIRAP. Then MyD88 joins the comlex which 
is bound by IRAKs and TRAF6 to activate IKKβ. ② MyD88 is recruited upon binds of IL-1 to IL-1RI. Then, IRAK1 comjoins the complex and TRAF6 
also assemble to IKK complex. ③ The bingding of TNF with TNFR leads to the binding of TRADD, TRAF2 with the protein kinase RIP1, which 
forms a platform for the recruitment of TRAF2. When ubiquitinated RIP1 bindings to NEMO, it phosphorylates and activates IKKβ. ④ ROS from 
vascular lumen interact with various elements of the IKK/NF-κB signaling pathway. On the other hand, the phosphorylation of p65 in which 
ROS are involved leads to a greater activation of NF-κB. ⑤ The binding of ang II induces endoplasmic reticulum (ER) stress, activates and 
phosphorylates inositol-requiring 1α (IRE1α). Phosphorylated-IRE1α (p-IRE1α) recruits TRAF2, and then activates IKKβ. In the canonical pathway, 
IκBα is phosphorylated in an IKKβ- and NEMO(IKKγ)-dependent manner, which results in the nuclear translocation of mostly p65 or p50-containing 
heterodimers. Then, IκB degradates. The transcriptional p65 and p50 stimulate the production of inflammatory cytokines and finally monocyte 
adhesion, endothelial dysfunction, inflammatory, SMCs proliferation and migration, apoptosis, and oxidative stress all ensue. TIRAP: Toll/IL-1 receptor 
adaptor protein; MyD88: myeloid differentiation primary response gene 88; TRAF6: TNF-R-associated factor 6; IRAKs: IL-1 receptor-associated kinases; 
TRADD: TNF-R-associated death domain; RIP1: receptor-interacting protein 1; TRAF2: TNF-R-associated factor 2
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the arterial intima, thereby exacerbating atherosclero-
sis [47]. Shear stress  [48], TNF-α [49], IL-1β [50], LPS 
[51], high glucose [52], and insulin resistance [52] are all 
related to the activation and high expression of IKKs in 
ECs. ECs are continuously exposed to the shear caused 
by blood flow, which activates NF-κB that is mediated by 
integrin/Flk-1, a receptor for VEGF (vascular endothelial 
growth factor)/IKK pathway [48]. Tripartite motif-con-
taining 14 (TRIM 14) is positively regulated by TNF-α, 
IL-1β, and LPS, which in turn active NF-κB to form a 
positive feedback, and drives endothelial activation via 
the interaction between TRIM14 and NEMO [53]. Nota-
bly, TRIM 14 promotes endothelial activation by acti-
vating NF-κB to involve in the development of human 
atherosclerosis [53]. High glucose-induced endothelial 
dysfunction is accompanied by increased expressions of 
inflammatory cytokines and adhesion molecules, and 
adhesion molecules. Endothelial-monocyte adhesion is 
mediated by the CIKS (connection to IKK and SAPK/
JNK), an upstream regulator of NF-κB [54]. Addition-
ally, silver nanoparticles (AgNPs), a potentially hazard-
ous factor for early atherosclerosis, were found to induce 
HUVECs  impairment and dysfunction by activating 
the IKK/NF-κB pathways [55]. When IKKβ is persis-
tently activated by expressing the dominant interfering 
mutant, most NF-κB target genes are maximally induced 
in human microvascular endothelial cell line-1 [56]. The 
opposite result was observed with dominant negative 
IKKβ or blocking IKKα/β in response to low shear stress 
in ECs [57].

Macrophages IKKβ and atherosclerosis
Macrophages are known to play a major role in the devel-
opment of atherosclerosis, which are not only the major 
pro-inflammatory cells, but also the essential cellular 
components of atherosclerotic plaques [58]. Phagocytic 
macrophages engulf large amounts of ox-LDL and trans-
form into foam cells, which is a hallmark of atheroscle-
rosis [59]. In the plaque microenvironment, there is a 
vicious cycle between macrophage infiltration and pro-
inflammatory factor release [60]. Ox-LDL-activated mac-
rophages upregulated the expression of IKKα and IKKβ, 
and similar results were found in macrophages induced 
by LPS in vitro [61, 62]. Clinical studies have shown that 
obstructive sleep apnea, characterized by intermittent 
hypoxia, is an independent risk factor for atheroscle-
rosis, especially premature atherosclerosis. It is worth 
mentioning that its mechanism is closely related to the 
activation of IKKβ-dependent NF-κB pathway in murine 
macrophages [63, 64]. Further, excessive nutrition input 
activated the IKK/NF-κB signaling pathway and inflam-
mation in macrophages, which was strongly attenuated 

by major vault protein (MVP), an upstream inhibitor of 
IKK [65].

Vulnerable atherosclerotic plaques are prone to become 
culprit plaques that cause acute coronary syndromes 
(ACS), such as acute myocardial infarction, a serious 
complication of atherosclerosis [66]. Histone deacetylase 
9 (Hdac9), a member of the histone deacetylase II fam-
ily, catalyzes the deacetylation of histone H3K16ac and 
other non-histone proteins, contributing to atheroscle-
rosis and inflammation [67]. By activating IKK, Hdac9 
increases lesional macrophage content and promotes vul-
nerable plaque formation, whereas hematopoietic Hdac9 
knockout promotes the opposite role outcome [68]. Park 
SH, et  al. generated myeloid-specific IKKβ-deficient 
LDLR−/− mice and found that the lack of IKKβ in mac-
rophage attenuated high-fat diet-induced atherosclero-
sis in LDLR−/− mice mainly by alleviating inflammatory 
responses of macrophages  [40]. Moreover, chronic ure-
mia promoted atherosclerosis in uremic apoE−/−  mice 
by promoting endoplasmic reticulum (ER) stress-related 
inflammation, including activating ER stress induced 
inflammation via activating IKK phosphorylation [69]. 
Phosphorylated inositol-requiring 1α (p-IRE1α) is an ER 
stress marker protein expressed mainly in macrophages 
from atherosclerotic lesions. IRE1α‑siRNA inhibited 
inflammation and IKK phosphorylation in Ang II-treated 
RAW264.7 macrophages, thereby suppressing IκB degra-
dation and NF-κB p65 nuclear translocation [69]. Activa-
tion of renin-angiotensin system (RAAS) also aggravated 
atherosclerosis in experimental renal failure apoE−/− 
mice and upregulated IKK phosphorylation in Ang II-
stimulated RAW264.7 macrophages. It suggested that the 
IKK/NF-κB pathway promotes ER stress-induced inflam-
mation and atherosclerosis [70].

Vascular smooth muscle cells IKKβ and atherosclerosis
During atherogenesis, VSMCs undergo a phenotypic 
transformation from contractile to synthetic upon the 
induction of reprogramming transcription factors, such 
as Krüppel-like factor4 (KLF4) and Octamer-binding 
transcription factor (OCT4) [27]. Synthetic VSMCs 
acquire the capacity to proliferate and migrate from the 
media into intima at the sites of plaques [71]. What’s 
more, VSMCs synthesize most of the interstitial colla-
gens that stabilize the fibrous caps of plaques [72]. Unlike 
macrophages, VSMCs transform into a pro-inflamma-
tory phenotype similar to macrophages, acting as both 
targets and sources of inflammatory factors [26, 73].

Similarly, an  activated IKKβ-NF-κB axis has been 
observed in VSMCs from human atherosclerotic lesions 
[74]. In  vitro, IL-1β-induced proliferation of VSMCs in 
human saphenous veins via IKKβ activation, which was 
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attenuated by transfection of inactive IKKβ mutants 
[75]. Oxygen free radicals play a key role in atherogen-
esis by activating NF-κB in VSMCs, which associated 
with IKKβ-induced degradation of IκB [76]. Similar 
results were obtained in VSMCs stimulated by LPS or 
IL-1β in  vitro [77]. IKKβ knockout in VSMCs by the 
SM22Cre-IKKβ-flox system lead to significant inhibition 
of vascular inflammation and atherosclerotic plaques in 
LDLR−/− mice [14, 40]. Furthermore, IKKβ knockout in 
VSMCs induced by U0126 and SB202190 (inhibitors of 
p42/p44 MAPK) inhibited cytosolic phospholipase A2 
(cPLA2) expression, which exacerbated the atherosclero-
sis-related vascular inflammation [78].

Anti‑inflammatory therapy targeting IKKβ 
in atherosclerosis
Natural product‑based derivatives
Vinpocetine, a derivative of the alkaloid vincamine, is 
one of the most commonly prescribed medicines for 
the treatment of cerebrovascular disease and cogni-
tive impairment in many countries [79]. The results of 
a study revealed that vinpocetine inhibits atherosclero-
sis in ApoE−/− mice by targeting the Akt/NF-κB recep-
tor dependent pathway [80]. In addition, it has also been 
shown that vinpocetine is an IKK inhibitor, which inhib-
its IKK with an IC50 value of approximately 17.17  μM, 
thereby suppressing the NF-κB-dependent inflamma-
tion [81]. A growing body of evidence suggests that vin-
pocetine is anti-inflammatory in a variety of cell types by 
directly targeting of IKKβ, including ECs, VSMCs, and 
monocytes/macrophages [82].

Metformin is a biguanide developed from the guani-
dine derivative galegine found in Galega officinalis 
(French lilac), widely used for the treatment of type 2 
diabetes mellitus [83]. According to preclinical and clini-
cal studies, metformin has anti-inflammatory properties 
and performs a protective role in cardiovascular disease, 
including atherosclerosis [84, 85]. In the  atherosclerosis 
model of rabbits, metformin impeded the atherosclero-
sis progression, which might be related to inhibiting the 
adhesion molecules and inflammatory factors by blocking 
the IKKβ/NF-κB translocation [86]. What’s more, there is 
the conclusive evidence that metformin suppressed the 
TNF-α–induced phosphorylation of the upstream kinase 
site p176/17738 on IKKα/β [87]. A study reported that 
metformin pretreatment (100 ~ 1000  mmol/L) inhibited 
IKKα/β phosphorylation, IκB degradation, and ultimately 
IL-6 production in TNF-α-induced HUVECs via the 
PI3K-dependent AMPK phosphorylation [88].

Naringin is a plant-derived flavonoid, found inmany 
plants such as grape, citrus species, and fractus aurantii, 
which has potential for preventing atherosclerosis [89]. 
In ApoE−/− mice fed a high-fat diet, naringin significantly 

alleviated atherosclerosis and reduced the serum and 
liver cholesterol levels by 24.04 and 28.37%, respectively 
[90]. Interestingly, in TNF-α-stimulated HUVECs, nar-
ingin suppressed the activation of NF-κB by inhibiting 
IKKβ activity [91, 92]. What’s more, in a dose-dependent 
manner, naringin appears to reduce the risk of athero-
sclerosis by inhibiting the adhesion of THP-1 monocytes 
to TNF-α-stimulated HUVECs [91, 92].

Emodin is an anthraquinone derivative, naturally 
occurring in oriental herbs, with diverse biological prop-
erties [89]. It has been demonstrated by experimental 
studies that emodin is capable of attenuating and stabi-
lizing atherosclerotic plaques [93]. Another study found 
that emodin exhibited inhibitory effects on LIGHT-
induced macrophage migration, which was the result of 
NF-κB activation by NADPH oxidase p47 (phox), sug-
gesting that its anti-atherosclerosis effect was attributed 
to interventing the IKK [94]. Additionally, emodin inhib-
ited TNF-α-induced activation of NF-κB in rat aortic 
VSMCs and dose-dependently reduced inflammatory 
factor gene expression, supporting its anti-atherogenic 
effects [95].

Green tea polyphenols consist of more than 30 phe-
nolic substances, the main components of which are 
catechins and their derivatives [96]. Extensive labora-
tory and epidemiological studies have demonstrated that 
green tea polyphenols reduce the risk of cardiovascular 
disease in both animals and humans [97, 98]. As a result 
of pretreatment with green tea polyphenols, oxLDL-
induced proinflammatory cytokine TNF-α and NF-KB 
activation was reduced by inhibiting the IKK activity in 
a dose-dependent manner [99]. Stybenpropol A, a resin 
secreted from the styrax tonkinensis bark, has a protec-
tive effect on the vascular endothelium [100]. In  vitro, 
stybenpropol A blocked the monocyte migration, as 
well as adhesion to TNF-α-induced HUVECs when 
it inhibited the IKK/NF-κB pathway [100]. Methyl-β-
cyclodextrin (MβCD), a cyclodextrins derivative, due to 
its high affinity for cholesterol, it is one of the most effec-
tive agents for removing plasma membrane cholesterol 
[101]. By downregulating adhesion molecule expression 
via the LPS/IKK/NF-κB pathway, MβCD may be able to 
inhibit monocyte endothelial adhesion, which indicates 
MβCD may have anti-atherosclerosis effects [51].

Natural extracts
Tanshinone IIA is a main lipophilic component derived 
from the root extract of Salvia miltiorrhiza, which has 
been widely used in traditional Chinese medicine for the 
treatment of cardiovascular diseases [102, 103]. Accord-
ing to a study, Tanshinone IIA downregulated the NF-κB 
activity, and reduced the expression of TNF-α and 
MCP-1, to stabilize vulnerable atherosclerosis plaque in 
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ApoE−/− mice [104]. What’s more, Cheng-Chieh Chang 
et al. found that tanshinone IIA (1 ~ 20 µM) inhibited the 
adhesion of THP-1 monocytes to HUVECs in response 
to TNF-α stimulation by downregulating IKK/NF-κB 
mediated VCAM-1, ICAM-1 and fractalkine expression 
in HUVECs [105]. There is a kind of polyphenol, querce-
tin, exerts anti-inflammatory effects and contributes to 
progression of atherosclerosis [106]. There is increasing 
evidence that both in hypercholesterolemic diet-induced 
rabbits and high-fat diet fed ApoE−/− mice, quercetin is 
effective in slowing the progression of atherosclerosis 
[107, 108]. Similarly, another study demonstrated that 
in  vitro and in  vivo, quercetin reduced both VCAM-1 
and E-selectin expression, as well as IKK gene expression 
implicated in local vascular inflammation, with a signifi-
cant reduction (40%) in the atherosclerotic plaque [109].

Myricetin, also known as alias myricetin, myricetin, is 
a bark extract from Myrica rubra Sieb. et Zucc, has been 
found to have vascular protective properties [110]. With 
the development of medical research, the anti-inflamma-
tory and anti-atherogenic properties of myricetin have 
been reported successively [111–113]. It has been shown 
that myceritin significantly reduced the plaque area in 
the aortic root of LDLR−/− mice, as well as improved ox-
LDL-induced cholesterol accumulation in macrophages 
in these mice [114]. Furthermore, according to an early 
study, myricetin inhibit monocyte adhesion to TNF-α-
mediated ECV304 cells (a type of HUVECs) by strongly 
inhibiting IKK and its downstream signaling NF-κB/IκB 
[115]. The root of clematis mandshurica is used as anti-
inflammatory agent in Chinese pharmacopoeia [116]. 
Clematichinenoside (a triterpene saponin), extracted 
from the root of clematis mandshurica, is beneficial in 
the early stage of atherosclerosis [117]. According to a 
study, clematichinenoside inhibits VCAM-1 and ICAM-1 
expression in TNF-α-treated ECs via the NADPH oxi-
dase-dependent IκB/NF-κB pathway [118].

There is an active bioactive diterpene lactone called 
andrographolide (AP) ectracted from andrographis pan-
iculata, which has the biological functions, including 
anti-inflammation, anti-atherosclerosis, and hypogly-
cemic activities [119]. It is clear from a study that AP is 
a novel NF-κB Inhibitor, which inhibits the prolifera-
tion of VSMCs in atherosclerosis [120]. Another study 
showed that AP downregulated ICAM-1 expression in 
TNF-α-treated EA.hy926 cells (HUVECs fusion cell), at 
least partly by reducing the activation of IKK, indicat-
ing a cardioprotective role. Avenanthramide-c, a unique 
soluble polyphenol, is  extracted from oats [121]. As a 
result of oat bran diets, atheroma lesions are reduced, 
and high levels of avenanthramides further reduce aortic 
lesions [122]. An immunofluorescence assay showed that 
avenanthramide-c reduced the translocation of NF-κB 

from the cytoplasmic region to the nucleus, and down 
regulated the expressions of IκB and p-IκB in TNF-α acti-
vated human arterial smooth-muscle cells  (HASMCs) 
[123]. Moreover, avenanthramides, a unique polyphenol 
from oats, decreased the IL-1β-induced proinflammatory 
cytokines, such as IL-6, IL-8, and MCP-1, in human aor-
tic endothelial cells (HAECs), at least in part by blocking 
IKK phosphorylation [124].

Cardiac glycoside digitoxins are natural steroid com-
pounds originally exacted from Digitalis sp, there is 
strong evidence that cardiac glycoside digitoxin is a 
potent anti-inflammatory agent [125]. Digitoxin inhib-
its monocyte adhesion to endothelial monolayers, which 
is associated with inhibiting the IL-1β-induced NF-κB 
signaling  at the level of TAK-1/IKK [126]. Kansuinine 
A is extracted from Euphorbia kansui L., a well-known 
medicinal plant in China [127]. There is a study that con-
firms the anti-atherosclerotic properties of Kansuinine 
A by inhibiting the IKKβ/IκBα/NF-κB signaling in ath-
erogenic animals and H2O2-stumilated HAECs [42, 128]. 
Honokiol is a small-molecule polyphenol that is extracted 
from the Chinese herbal medicine Magnolia officinalis, 
which has a number of pharmacological properties [129]. 
There is overwhelming evidence that honokiol suppresses 
inflammation and oxidative stress in the carotid arteries, 
inhibiting the formation of atherosclerotic plaque [130]. 
Surprisingly, in palmitic acid-inducted HUVECs, the 
expression of NF-KB subunits (p50 and p65), as well as 
IκB phosphorylation in the IKK/IκB/NF-κB signaling, 
was significantly inhibited by honokiol [90, 131].

Longxuetongluo Capsule (LTC) is a new drug con-
sisting of the total phenolic extract of Chinese dragon 
blood. It is believed that Longxuetongluo capsules 
inhibit monocyte adhesion to the HUVECs through the 
MAPK/IKK/IκB/NF-κB signaling, thereby reducing ath-
erosclerotic lesions in the aortic sinus of ApoE−/− mice. 
Pulvones A and C were newly discovered isoflavones 
from Millettia pulchra, a renowned anti-inflammatory 
herbal medicine from southeast China [132]. In LPS-
stimulated RAW264.7 macrophage cells, pulvones A 
and C decreased IL-6 and IL-1β expression, reduced the 
nuclear translocation of NF-κB (p65), and interrupted 
IκB phosphorylation by directly inhibiting the IKKβ 
kinase activity (40% inhibition), all of which were vali-
dated by docking studies [133].

Acetyl-11-keto-β-boswellic acid (AKBA), the main 
pharmacological component of Boswellia extract, is 
considered to be a natural inhibitor of the pro-inflam-
matory transcription factor NF-κB, exerting powerful 
anti-inflammatory and antioxidant effects [134]. As a 
result, AKBA significantly downregulated many NF-κB-
dependent genes, including MCP-1, MCP-3, MIP-2, IL-1, 
VEGF and tissue factor (TF), as well as IKK activity, and 
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resulted in a significant 50% reduction in the size of ath-
erosclerotic lesions in LPS-injected apoE−/− mice; fur-
thermore, similar anti-inflammatory effects were found 
in LPS-stimulated mouse macrophages and mononuclear 
cells as well as human macrophages [135]. Ginsenoside 
Re, a major pharmacological active ingredient of ginseng, 
has been reported to be a potential therapeutic mol-
ecule for atherosclerosis and one of the most promising 
IKK-β inhibitors [136]. Ginsenoside Re inhibited IKKβ 
phosphorylation, NF-κB activation, and the expression 
of proinflammatory cytokines TNF-α and IL-1β in LPS-
stimulated peritoneal macrophages, but had no effect on 
TNF-α-stimulated peritoneal macrophages [137].

Natural pentacyclic triterpenoids (PTs), ursolic acid 
(UA), and corosolic acid (CA) exhibit a wide range of bio-
logical activities, such as anti-inflammatory and cardio-
protective effects, which are closely related to particularly 
the regulation of the NF-κB signaling pathway [138]. 
According to a hotspot kinase assay and in vitro experi-
ments, UA and CA inhibited IKKβ and down-regulated 
the proteins expression of IKKβ/NF-κB cascade in LPS-
stimulated RAW 264.7 cells, indicating that IKKβ is the 
main target of PTs-induced NF-κB inhibition [139]. Black 
pepper (Piper nigrum L.) is commonly used in cook-
ing and traditional medicine in several countries and 
has been shown to be beneficial in atherosclerosis [140]. 
Pipernigramides (42–44), a new piperic ester isolated 
from black pepper EtOH extract, significantly inhibited 
inducible nitric oxide synthase (iNOS)-mediated release 
of NO, IL-1β, IL-6, TNF-α, and PGE2 in LPS-stimulated 
RAW 264.7 cells by targeting IKK-β [141].

Synthetic drugs
Sulforaphane (SFN) is a phytocompound belonging to 
the isothiocyanate family isothiocyanate derived from 
cruciferous vegetables, such as broccoli [142]. The aor-
tic histopathologic examination confirmed that SFN sig-
nificantly reduced the expression of NF-κB in the aortic 
tissue of fed high cholesterol diet (HCD) rabbits [143]. 
Due to the inhibition of RhoA/ROCK/NF-κB signal-
ing in human endothelial cells ECV-304, SFN attenu-
ated TNF-α-induced ICAM-1 expression, as well as IKK 
phosphorylation, suggesting a beneficial role in the ather-
osclerosis-related inflammation [144–146]. Furthermore, 
SFN also downregulated endothelial lipase expression 
by inhibiting NF-κB in the same cellular model, which 
favored HDL cholesterol levels [91]. A hydrophilic vita-
min obtained through diet, vitamin C, also known as 
ascorbic acid, is synthesized by all plants and most ani-
mals [147]. Excitingly, according to a clinical study, sup-
plementing with vitamin C can prevent atherosclerosis 
by improving vascular reactivity and structure in passive 
smokers [148]. furthermore, vitamin C inhibits NF-κB 

activation by activating p38 mitogen-activated protein 
kinases in ECV304 and HUVECs induced by IL-1, PMA, 
H2O2, TNF, and IFN-γ [149].

As a micronutrient, zinc is essential for human health, 
which plays a variety of biological roles, such as aiding 
in growth, metabolism, and immunity [150]. There are 
evidence that zinc deficiency has a negative role in ath-
erosclerosis in both animal studies and epidemic research 
[151]. Prasad et.al found that zinc increased A20 
and A20–TNF-receptor associated factor-1 complex, 
decreased inflammatory cytokines by the IKKα/NF-κB 
signaling pathway, downregelated in HL-60, HUVECs, 
and SW480 cell lines [152]. 1-deoxynojirimycin, a unique 
polyhydroxy alkaloid, is the main active component of 
mulberry (Morus indica L.) leaves and has been found 
to prevent coronary heart disease (CHD) at least in part 
by inhibiting the IKK/NF-κB pathway [153]. Similarly, a 
placebo-controlled, double-blind clinical trial clarifies 
how 1-deoxynojirimycin does attenuate atherosclerotic 
lesions in patients with coronary heart disease [153]. 
Ebselen is a synthetic, organo-selenium radical scavenger 
compound that functions similarly to glutathione peroxi-
dase [154], which exerts antiatherogenic effects by modu-
lating the transcription factors NF-κB [42].

Polyethylene glycol-superoxide dismutase is an impor-
tant modifier of SOD that protects ECs [155]. Pros-
taglandin A1, an anti-inflammatory cyclopentenone 
prostaglandin, is biosynthesized via dihomo-γ-linolenic 
acid. Treatment with polyethylene glycol-superoxide dis-
mutase and prostaglandin A1 prevented homocysteine-
induced activation of IKK kinase and NF-κB in HUVECs 
and HAECs [156]. Fatty acid binding protein (FABP) 4/5 
is predominantly expressed in macrophages and/or adi-
pocytes and plays essential roles in energy metabolism, 
inflammation and atherosclerosis [157]. A previous study 
in patients with angiographically proven coronary artery 
disease (CAD) showed that FABP 4 plays a critical role in 
the activation of mononuclear cells and the dysfunction 
of ECs in atherosclerosis. Interestingly, FABP 4/5 inhibi-
tors, such as compounds A16 and B8, apparently reduced 
the levels of TNF-α and MCP-1 by inhibiting  the   IKK/
NF-κB pathway, exhibiting anti-inflammatory effects in 
LPS-stimulated RAW264.7 macrophages [157].

Early reports demonstrated that 8-tosylamino qui-
nolone, a kind of a representative IKK inhibitor (BAY11-
7082) analog, has anti-atherogenic effects [158]. Further 
studies revealed that BAY11-7082 diminished NO, TNF-
α, IL-1β, IL-6, and PGE2 production, as well as NF-κB 
and IKK activation in LPS-activated RAW264.7 cells and 
peritoneal macrophages in a dose-dependent manner by 
inhibiting the Akt/IKK/NF-κB pathway [159]. In  vivo, 
losartan, an angiotensin converting enzyme inhibitor, was 
found to significantly attenuate aortic atherosclerosis, 
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inhibit ER stress, and reduce aortic inflammation in 
uremic apoE−/− mice; in  vitro, losartan inhibited the 
upregulation of GRP78 in Ang II-stimulated RAW264.7 
macrophages and IKK and IκB phosphorylation [70]. 
It has been suggested that losartan has a protective 
effect against atherosclerosis in patients with uremic 
symptoms.

TMP195, a class IIa histone deacetylase inhibitor, 
reduced the characteristics of plaque vulnerability, 
thereby enhancing plaque stability in advanced lesions. 
In addition, transcriptional profiling studies revealed 
that TMP195 reduced expression of target genes of 
NF-κB in advanced lesions by inhibiting IKKβ [68]. 
9-(2-chlorobenyl)-9H-carbazole-3-carbaldehyde (LCY-2-
CHO), an agonist of NRF2, inhibited the inflammatory 
responses in cultured rat aortic VSMCs. By inhibiting 
IKK phosphorylation and IκBα degradation, LCY-2-CHO 
reduced IL-1β-induced inflammatory mediators, such as 
cyclooxygenase-2 (COX-2) and IL-8  [160]. Based on its 
anti-inflammatory properties in VSMCs, LCY-2-CHO 
has therapeutic potential in atherosclerosis [160].

Other drugs
Human ß-defensin 3 (hBD3) is a cardio-protective natu-
ral peptide found in mucous membranes, cells of the epi-
thelium, and cells of the endothelium. In ApoE−/− mice, 
hBD3 inhibited atherosclerosis progression and sup-
pressed P.gingivalis LPS-induced NF-κB activity [161]. 
What’s more, HBD3 reduces TNF-α-induced inflamma-
tion and monocyte adhesion in HUVECs with a dose-
dependent effect by decreasing the phosphorylation of 
IKK-α/β, IκB and p65 subunit [162]. Similarly, glucagon-
like peptide 1 (GLP-1) has been shown to be one of the 
incretin hormones, confers protection against atheroscle-
rosis and myocardial injury [163–165].

The Mediterranean dietary is a plant-based, antiox-
idant-rich, unsaturated fat dietary pattern with lower 
cardiovascular diseases morbidity and mortality [166]. 
Whether a mediterranean diet with coenzyme Q (CoQ), 
200 mg/day in capsules, contains 15% of energy as pro-
tein, 47% of energy as carbohydrate, and 38% of total 
energy as fat (24% MUFA provided by virgin olive oil, 
10% saturated fatty acid, and 4% polyunsaturated fatty 
acid), affected the inflammatory response genes in elderly 
individuals was investigated. This dietary pattern reduced 
postprandial expression of p65 and IKKβ, suggesting 
anti-inflammatory activity [167].

Inflammatory responses can also be triggered by 
other stimuli such as TNFα, ox-LDL and Ang II on mac-
rophages. Jianpi Huazhuo Tiaozhi granules (JHTG), a 
prepared Chinese herbal medicine, including dangshen, 
poria cocos, tangerine peel, towel gourd, amomum vil-
losum, lotus leaf, atractylodes macrocephala, coix seed, 

wood fragrance, salvia miltiorrhiza, malt, hawthorn, and 
fried alisma orientalis, is commonly used clinical prac-
tice for the prevention of atherosclerosis [62]. Studies 
have shown that JHTG attenuates oxidative stress injury 
induced by ox-LDL in RAW264.7 macrophages, reducing 
the levels of ROS, the expression of NOX4, IKK-α, IKK-
β, and NF-κB by blocking the NOX/ROS-NF-κB pathway 
[62].

Despite the widespread use of percutaneous coronary 
intervention (PCI) to treat coronary artery diseases, post-
operative arterial restenosis remains a concern [168]. 
Fufang-Zhenzhu Tiaozhi Capsule (FTZ) is a chinese 
herbal medicine prescription including rhizoma cop-
tidis, radix salvia miltiorrhiza, radix notoginseng, fructus 
ligustri lucidi, herba cirsii jeponici, cortex eucommiae, 
fructus citri sarcodactylis, and radix atractylodes macro-
cephala. Excitingly, FTZ reduces restenosis by inhibiting 
NF-κB activity and downregulating inflammatory factor 
expression in the atherosclerotic lesion of a rabbit reste-
nosis model [76, 169]. It is well known that coronary ath-
erosclerosis is the pathological basis for ischemic heart 
disease.

Therapeutic potential and future considerations
The compelling evidence has demonstrated the contribu-
tory role of IKKβ/NF-κB signaling in the pathogenesis of 
atherosclerosis. Therefore, the IKKβ is very attractive and 
promising as a target for the treatment of atherosclero-
sis. This review expounds on the link between key cellu-
lar components of atherosclerosis and IKKβ. It supports 
the view that targeted inhibition of IKKβ may produce a 
beneficial effect in preventing atherosclerosis. As a result, 
inflammation-reducing drugs targeting IKKβ have been 
developed and applied in several cellular studies and ani-
mal models, including natural products-based deriva-
tives, natural extracts, synthetic drugs, as well as peptides 
et.al other drugs (Table  1). As a matter of fact, we also 
need to take attention to the potential side effects of these 
drugs, for example, digestive side effects, such as abdomi-
nal pain, nausea, and vomiting, have been observed with 
vinpocetine [170], metformin [171], andrographolide 
[172], digitoxin [173], acetyl-11-keto-β-boswellic acid 
[174], ursolic acid [175], and liraglutide [176]. Addition-
ally, it has been shown in repeated studies that green 
tea polyphenols [177], acetyl-11-keto-β-boswellic acid 
[174], and  ursolic acid [175] cause liver damage/degen-
eration, while methyl-β-cyclodextrin [51] (parenteral 
administration), quercetin [109], and corosolic acid [139] 
have nephrotoxic potential. Andrographolide [172] and 
digitoxin [173] cause chest tightness, palpitations, and 
arrhythmic. Similarly, vinpocetine [170] and andro-
grapholide [172] cause the symptoms including dizziness 
headache, convulsions, and coma. The side effects of the 
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above mentioned drugs are in fact very difficult to avoid 
and therefore scientific use of medication is a must.

In summary, as more drugs targeting IKKβ are discov-
ered, there will be more opportunities to fully understand 
the complex functions of IKKβ in atherogenesis and to 
develop new effective therapies. Further result should be 
conducted in the future to enhance the understanding of 
drugs with potential therapeutic effects to treat athero-
sclerosis via IKKβ, such as additional validation experi-
ments, comparative efficacy experiments among different 
drugs, and multicellular targeting experiments and clini-
cal trials, etc. Understanding the pathogenesis of dis-
eases associated with impaired IKKβ activity may provide 
insight into prevention and treatment of these human 
diseases.
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